Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Acetylpyridinium 3-amino-2-chloropyridinium tetrachloridocobaltate(II)

Ariel Adamski, Violetta Patroniak and Maciej Kubicki*

Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
Correspondence e-mail: mkubicki@amu.edu.pl

Received 18 December 2008; accepted 7 January 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.065$; data-to-parameter ratio $=17.6$.

In the title complex, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClN}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)\left[\mathrm{CoCl}_{4}\right]$, the $\mathrm{Co}^{\text {II }}$ ions are tetrahedrally coordinated. The crystal structure is built from hydrogen-bonded centrosymmetric tetramers of tetrachloridocobaltate(II) dianions and 3-amino-2-chloropyridinium cations, additionally strengthened by significant $\pi-\pi$ stacking of pyridinium rings [interplanar distance 3.389 (3) A]. The tetramers are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into chains; the second kind of cations, viz. 2-acetylpyridinium, are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to both sides of the chain. The $\mathrm{Co}-\mathrm{Cl}$ bond lengths in the dianion correlate with the number of hydrogen bonds accepted by the Cl atom. An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction is also present.

Related literature

There are only few examples of structures involving the ligands present in the title structure. For related structures, see: 2-acetylpyridine itself (Laurent, 1966) and its cation in perchlorate (Husak, 1996) and in the complex with tetra-phenylporphyrin-zinc(II) (Byrn et al., 1993), and a free base 3-amino-2-chloropyridine (Saha et al., 2006), and the latter as the dihydrogenphosphate (Hamed et al., 2007) and as the silver complexes (Tong et al., 2002; Li et al., 2002). For literature on the Schiff base complexes, see Häner \& Hall (1999); Mukherjee et al. (2005); Radecka-Paryzek et al. (2005); Yam \& Lo (1999).

Experimental

Crystal data
$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClN}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=452.44$
Triclinic, $P \overline{1}$
$a=7.3255$ (5) A
$b=8.3188$ (5) \AA
$c=16.2657$ (11) \AA
$\alpha=89.114$ (5) $^{\circ}$
$\beta=82.806(5)^{\circ}$

$$
\begin{aligned}
& \gamma=64.145(6)^{\circ} \\
& V=884.13(10) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.73 \mathrm{~mm}^{-1} \\
& T=100(1) \mathrm{K} \\
& 0.4 \times 0.15 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection
Kuma KM-4-CCD four-circle diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2007)
$T_{\text {min }}=0.616, T_{\text {max }}=0.841$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.065$
$S=1.24$
H atoms treated by a mixture of independent and constrained refinement
3798 reflections
216 parameters

10954 measured reflections 3798 independent reflections 3470 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	$0.88(3)$	$2.28(4)$	$3.126(2)$	$161(3)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.84(3)$	$2.41(3)$	$3.127(2)$	$145(3)$
$\mathrm{N} 31 A-\mathrm{H} 31 A \cdots \mathrm{C} 22^{\mathrm{ii}}$	$0.90(4)$	$2.51(4)$	$3.323(3)$	$151(3)$
$\mathrm{N} 31 A-\mathrm{H} 31 B \cdots \mathrm{Cl} 3$	$0.96(4)$	$2.33(4)$	$3.267(3)$	$167(3)$
$\mathrm{C} 6 B-\mathrm{H} 6 B \cdots \mathrm{Cl} 4$	0.95	2.71	$3.647(3)$	171

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+2,-y+1,-z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

This research was carried out as part of a Polish Ministry of Higher Education and Science project (grant No. NN 2042716 33).

[^0]
References

Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. \& Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.
Hamed, K., Samah, A. \& Mohamed, R. (2007). Acta Cryst. E63, o2896.
Häner, R. \& Hall, J. (1999). Antisense Nucleic Acid Drug Dev. 7, 423-430.
Husak, M. (1996). Private communication (refcode NABLIL). CCDC, Cambridge, England.
Laurent, A. (1966). Acta Cryst. 21, 710-715.
Li, W., Tong, M.-L., Chen, X.-M., Yuan, J.-X. \& Hu, M.-L. (2002). Acta Cryst. E58, m203-m205.
Mukherjee, A., Dhar, S., Nethaji, M. \& Chakravarty, A. R. (2005). Dalton Trans. pp. 349-353.

metal-organic compounds

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxfordshire, England.
Radecka-Paryzek, W., Patroniak, V. \& Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156-2175.
Saha, B. K., Nangia, A. \& Nicoud, J.-F. (2006). Cryst. Growth Des. 6, 12781281.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tong, M.-L., Chen, X.-M. \& Ng, S. W. (2002). Acta Cryst. C58, m481-m482. Yam, V. \& Lo, K. K.-W. (1999). Coord. Chem. Rev. 184, 157-240.

supplementary materials

2-Acetylpyridinium 3-amino-2-chloropyridinium tetrachloridocobaltate(II)

A. Adamski, V. Patroniak and M. Kubicki

Comment

Schiff bases are often employed as ligands in the metal ion - directed assembly of coordination architectures (RadeckaParyzek et al., 2005). Such complexes are used as luminescent probes in the visible and near-IR spectral domains (Yam et al., 1999), as precursors for doped materials where metal centers must be implemented at a fixed distance and as catalysts for specific DNA (Mukherjee et al., 2005) and RNA (Häner \& Hall, 1999) cleavage. In the course of our studies of Schiff base metal complexes with novel chemical properties we have accidentally synthesized the interesting example of threecomponent complex with CoCl_{4} dianion and two different cations: 3-amino-chloropyridinium (a) and 2-acetylpyridinium (b) (Scheme \& Fig. 1).

Both cations are planar within the experimental error; the maximum deviation from the least-squares planes are as small as $0.006(2) \AA$ in (a) and $0.002(2) \AA$ in (b). In the latter case the plane of acetyl group makes a dihedral angle of $11.0(2)^{\circ}$ with the ring plane. In the crystal structure, two motifs involving the (a) cations, $\left.R_{4}^{4}{ }_{4} 12\right)$ and $R_{4}^{4}(18$, act together to make the double chain of these cations and dianions along [110] direction. The $R_{4}^{4}(18)$ motif is additionally strengthened by the $\pi-\pi$ stacking of pyridinium rings. The distance between the exactly parallel least-squares planes is 3.389 (3) \AA, with relatively small offset of only $0.708 \AA$. The second kind of cations, (b) are joined - by means of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds - to the chain, on its both sides (Fig. 2). Additionally, relatively short and linear $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond is accepted by the Cl 4 atom, not involved in any $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

The Co is tetrahedrally coordinated in the anions (Fig. 1); the distortion from the ideal geometry is small. The angles are close to the ideal values $\left\{106.68(3)-112.35(3)^{\circ}\right\}$. The differences in the $\mathrm{Co}-\mathrm{Cl}$ bond lengths correlate with the number of hydrogen bonds accepted by the Cl atom: $\mathrm{Co}-\mathrm{Cl} 2$ bond is the longest $\{2.2893$ (7) \AA; Cl 2 accepts two h.b.'s $\}, \mathrm{Co}-\mathrm{Cl} 1$ and $\mathrm{Co}-\mathrm{Cl} 3$ have similar, intermediate lengths of 2.2751 (7) \AA and 2.2771 (7) \AA, and Cl 4 , which accepts only $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, makes the shortest $\mathrm{Co}-\mathrm{Cl}$ bond of 2.2593 (7) \AA.

Experimental

To a mixture of cobalt chloride hexahydrate ($18.2 \mathrm{mg} ; 0.08 \mathrm{mmol}$) and 2-acetylpyridine $(9.4 \mathrm{mg} ; 0.08 . \mathrm{m} \mathrm{mol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$, 3-amino-2-chloropyridine ($0.01 \mathrm{~g} ; 0.08 \mathrm{mmol}$) in acetonitrile ($10 \mathrm{~cm}^{3}$) was added dropwise with stirring. The reaction mixture was stirred for 24 h , at room temperature. The green crystals were obtained by slow diffusion of chloroform to the acetonitrile solution.

Refinement

Hydrogen atoms from $\mathrm{N} — \mathrm{H}$ groups were located in difference Fourier maps and isotropically refined; other H atoms were located geometrically and refined as the 'riding model' with $U_{\text {iso }}$'s set at 1.2 (1.4 for methyl group) times $U_{\text {eq }}$'s of appropriate oxygen atoms.

supplementary materials

Figures

Fig. 1. Anisotropic ellipsoid representation of compound $\mathbf{1}$ together with atom labelling scheme (Siemens, 1989). The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. Hydrogen bonds are drawn as dashed lines.

Fig. 2. The fragment of the crystal packing of complex 1. Hydrogen bonds and $\pi-\pi$ interactions are shown as dashed lines. Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+2,-y+1,-z$; (iii) -$x+1,-y+2,-z$; (iv) $x-1, y+1, z$.]

2-Acetylpyridinium 3-amino-2-chloropyridinium tetrachloridocobaltate(II)

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClN}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=452.44$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.3255$ (5) \AA
$b=8.3188(5) \AA$
$c=16.2657(11) \AA$
$\alpha=89.114(5)^{\circ}$
$\beta=82.806(5)^{\circ}$
$\gamma=64.145(6)^{\circ}$
$V=884.13(10) \AA^{3}$
$Z=2$
$F_{000}=454$
$D_{\mathrm{x}}=1.700 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 7316 reflections
$\theta=3-25^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=100$ (1) K
Plate, blue
$0.4 \times 0.15 \times 0.1 \mathrm{~mm}$

Data collection

Kuma KM-4-CCD four-circle
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.1929 pixels mm^{-1}
$T=100(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.616, T_{\text {max }}=0.841$
10954 measured reflections

3798 independent reflections
3470 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.019$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\min }=2.7^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-20 \rightarrow 19$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$	Hatoms treated by a mixture of independent and constrained refinement

$w R\left(F^{2}\right)=0.065$
$S=1.24$
3798 reflections
216 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0083 P)^{2}+1.4737 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Co1	$0.88393(5)$	$0.59259(4)$	$0.24288(2)$	$0.01220(9)$
C11	$1.00305(9)$	$0.37850(8)$	$0.33709(4)$	$0.01584(13)$
C12	$0.70499(9)$	$0.51487(8)$	$0.15843(4)$	$0.01614(13)$
C13	$1.15608(9)$	$0.60998(8)$	$0.16588(4)$	$0.01751(13)$
C14	$0.66564(10)$	$0.86213(8)$	$0.30354(4)$	$0.01991(14)$
N1A	$0.5900(3)$	$1.1877(3)$	$-0.05439(15)$	$0.0177(5)$
H1A	$0.542(5)$	$1.229(4)$	$-0.098(2)$	$0.026(9)^{*}$
C2A	$0.7364(4)$	$1.0189(3)$	$-0.06482(16)$	$0.0175(5)$
C12A	$0.82058(10)$	$0.92797(9)$	$-0.16337(4)$	$0.02218(15)$
C3A	$0.8134(4)$	$0.9213(3)$	$0.00390(16)$	$0.0161(5)$
N31A	$0.9566(4)$	$0.7490(3)$	$-0.00534(16)$	$0.0236(5)$
H31A	$1.011(5)$	$0.705(4)$	$-0.058(2)$	$0.033(9)^{*}$
H31B	$1.015(5)$	$0.690(4)$	$0.042(2)$	$0.032(9)^{*}$
C4A	$0.7311(4)$	$1.0089(4)$	$0.08237(17)$	$0.0186(5)$
H4A	0.7798	0.9479	0.1307	0.022^{*}
C5A	$0.5794(4)$	$1.1834(4)$	$0.08995(17)$	$0.0209(6)$
H5A	0.5254	1.2408	0.1434	0.025^{*}
C6A	$0.5065(4)$	$1.2742(4)$	$0.02109(18)$	$0.0198(6)$
H6A	0.4014	1.3933	0.0259	0.024^{*}
N1B	$0.7520(3)$	$0.5002(3)$	$0.51335(13)$	$0.0148(4)$
H1B	$0.844(5)$	$0.447(4)$	$0.470(2)$	$0.032(9)^{*}$
C2B	$0.7401(4)$	$0.4099(3)$	$0.58207(15)$	$0.0148(5)$
C21B	$0.9013(4)$	$0.2182(3)$	$0.57886(16)$	$0.0162(5)$
O21B	$1.0417(3)$	$0.1707(3)$	$0.52259(12)$	$0.0222(4)$
C22B	$0.8761(4)$	$0.1020(4)$	$0.64563(17)$	$0.0210(6)$

H22A	0.9764	-0.0222	0.6320	0.029^{*}
H22B	0.7376	0.1102	0.6503	0.029^{*}
H22C	0.8978	0.1416	0.6985	0.029^{*}
C3B	$0.5901(4)$	$0.4969(4)$	$0.64742(16)$	$0.0176(5)$
H3B	0.5773	0.4356	0.6959	0.021^{*}
C4B	$0.4563(4)$	$0.6782(4)$	$0.64097(17)$	$0.0201(6)$
H4B	0.3530	0.7407	0.6857	0.024^{*}
C5B	$0.4745(4)$	$0.7655(4)$	$0.56984(17)$	$0.0198(6)$
H5B	0.3839	0.8878	0.5653	0.024^{*}
C6B	$0.6263(4)$	$0.6729(3)$	$0.50503(17)$	$0.0179(5)$
H6B	0.6410	0.7308	0.4556	0.022^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.01261(16)$	$0.01326(16)$	$0.01084(17)$	$-0.00584(13)$	$-0.00127(12)$	$0.00103(13)$
C11	$0.0180(3)$	$0.0160(3)$	$0.0126(3)$	$-0.0066(2)$	$-0.0024(2)$	$0.0034(2)$
C12	$0.0149(3)$	$0.0185(3)$	$0.0152(3)$	$-0.0069(2)$	$-0.0039(2)$	$-0.0007(2)$
C13	$0.0151(3)$	$0.0224(3)$	$0.0162(3)$	$-0.0097(2)$	$-0.0007(2)$	$0.0032(2)$
C14	$0.0213(3)$	$0.0151(3)$	$0.0190(3)$	$-0.0047(2)$	$0.0003(2)$	$-0.0023(2)$
N1A	$0.0163(11)$	$0.0158(11)$	$0.0217(12)$	$-0.0073(9)$	$-0.0041(9)$	$0.0036(9)$
C2A	$0.0176(12)$	$0.0193(13)$	$0.0167(13)$	$-0.0099(10)$	$0.0010(10)$	$0.0011(10)$
C12A	$0.0260(3)$	$0.0232(3)$	$0.0140(3)$	$-0.0083(3)$	$-0.0004(2)$	$0.0017(2)$
C3A	$0.0156(12)$	$0.0185(13)$	$0.0174(13)$	$-0.0105(10)$	$-0.0020(10)$	$0.0037(10)$
N31A	$0.0246(12)$	$0.0212(12)$	$0.0157(12)$	$-0.0018(10)$	$-0.0010(10)$	$0.0022(10)$
C4A	$0.0201(13)$	$0.0201(13)$	$0.0172(13)$	$-0.0106(11)$	$-0.0019(10)$	$0.0023(11)$
C5A	$0.0221(13)$	$0.0223(14)$	$0.0211(14)$	$-0.0132(11)$	$0.0012(11)$	$-0.0038(11)$
C6A	$0.0190(13)$	$0.0161(13)$	$0.0300(15)$	$-0.0122(11)$	$-0.0072(11)$	$0.0051(11)$
N1B	$0.0162(10)$	$0.0166(11)$	$0.0122(10)$	$-0.0077(9)$	$-0.0016(8)$	$-0.0002(9)$
C2B	$0.0160(12)$	$0.0197(13)$	$0.0131(12)$	$-0.0114(10)$	$-0.0038(10)$	$0.0004(10)$
C21B	$0.0184(12)$	$0.0193(13)$	$0.0140(13)$	$-0.0102(10)$	$-0.0051(10)$	$0.0014(10)$
O21B	$0.0212(10)$	$0.0225(10)$	$0.0173(10)$	$-0.0051(8)$	$-0.0007(8)$	$0.0025(8)$
C22B	$0.0244(14)$	$0.0222(14)$	$0.0183(13)$	$-0.0117(11)$	$-0.0048(11)$	$0.0063(11)$
C3B	$0.0177(12)$	$0.0256(14)$	$0.0138(12)$	$-0.0133(11)$	$-0.0021(10)$	$0.0009(11)$
C4B	$0.0167(12)$	$0.0237(14)$	$0.0195(14)$	$-0.0088(11)$	$0.0001(10)$	$-0.0066(11)$
C5B	$0.0196(13)$	$0.0175(13)$	$0.0231(14)$	$-0.0083(11)$	$-0.0046(11)$	$-0.0021(11)$
C6B	$0.0221(13)$	$0.0176(13)$	$0.0175(13)$	$-0.0112(11)$	$-0.0056(10)$	$0.0039(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Co} 1-\mathrm{Cl} 4$	$2.2593(7)$
$\mathrm{Co} 1-\mathrm{Cl1}$	$2.2751(7)$
$\mathrm{Co}-\mathrm{Cl} 3$	$2.2771(7)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2893(7)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.341(3)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.362(4)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	$0.84(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.399(4)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} 2 \mathrm{~A}$	$1.705(3)$

N1B-C6B	$1.342(3)$
N1B-C2B	$1.352(3)$
N1B-H1B	$0.88(3)$
C2B-C3B	$1.378(4)$
C2B-C21B	$1.512(4)$
C21B-O21B	$1.214(3)$
C21B-C22B	$1.490(4)$
C22B-H22A	0.9800
C22B-H22B	0.9800

sup-4

supplementary materials

C3A-N31A	1.354 (3)
C3A-C4A	1.406 (4)
N31A-H31A	0.90 (4)
N31A-H31B	0.96 (4)
C4A-C5A	1.386 (4)
C4A-H4A	0.9500
C5A-C6A	1.372 (4)
C5A-H5A	0.9500
C6A-H6A	0.9500
$\mathrm{Cl} 4-\mathrm{Co} 1-\mathrm{Cl} 1$	112.35 (3)
$\mathrm{Cl} 4-\mathrm{Co} 1-\mathrm{Cl} 3$	110.42 (3)
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 3$	108.54 (3)
$\mathrm{Cl} 4-\mathrm{Co} 1-\mathrm{Cl} 2$	106.68 (3)
$\mathrm{Cl} 1-\mathrm{Col}-\mathrm{Cl} 2$	109.10 (3)
$\mathrm{Cl} 3-\mathrm{Co} 1-\mathrm{Cl} 2$	109.72 (3)
C2A-N1A-C6A	123.7 (2)
C2A-N1A-H1A	113 (2)
C6A-N1A-H1A	123 (2)
N1A-C2A-C3A	120.3 (2)
N1A-C2A-Cl2A	118.0 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl2A}$	121.7 (2)
N31A-C3A-C2A	121.0 (2)
N31A-C3A-C4A	122.0 (2)
C2A-C3A-C4A	116.9 (2)
C3A-N31A-H31A	117 (2)
C3A-N31A-H31B	119 (2)
H31A-N31A-H31B	123 (3)
C5A-C4A-C3A	120.7 (2)
C5A-C4A-H4A	119.7
C3A-C4A-H4A	119.7
C6A-C5A-C4A	120.7 (3)
C6A-C5A-H5A	119.6
C4A-C5A-H5A	119.6
N1A-C6A-C5A	117.7 (2)
N1A-C6A-H6A	121.2
C5A-C6A-H6A	121.2
C6A-N1A-C2A-C3A	-0.5 (4)
C6A-N1A-C2A-Cl2A	178.5 (2)
N1A-C2A-C3A-N31A	177.9 (2)
$\mathrm{Cl} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 31 \mathrm{~A}$	-1.0 (4)
N1A-C2A-C3A-C4A	-0.3 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-179.19 (19)
N31A-C3A-C4A-C5A	-177.7 (3)
C2A-C3A-C4A-C5A	0.5 (4)
C3A-C4A-C5A-C6A	0.0 (4)
C2A-N1A-C6A-C5A	1.0 (4)
C4A-C5A-C6A-N1A	-0.8 (4)
C6B-N1B-C2B-C3B	0.9 (4)

C22B-H22C	0.9800
C3B-C4B	1.406 (4)
C3B-H3B	0.9500
C4B-C5B	1.379 (4)
C4B-H4B	0.9500
C5B-C6B	1.388 (4)
C5B-H5B	0.9500
C6B-H6B	0.9500
C6B-N1B-C2B	123.6 (2)
C6B-N1B-H1B	116 (2)
C2B-N1B-H1B	121 (2)
N1B-C2B-C3B	119.1 (2)
N1B-C2B-C21B	114.6 (2)
C3B-C2B-C21B	126.3 (2)
O21B-C21B-C22B	124.9 (2)
$\mathrm{O} 21 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	117.8 (2)
$\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	117.3 (2)
$\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{~A}$	109.5
C21B-C22B-H22B	109.5
H22A-C22B-H22B	109.5
C21B-C22B-H22C	109.5
H22A-C22B-H22C	109.5
H22B-C22B-H22C	109.5
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	118.8 (2)
C2B-C3B-H3B	120.6
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	120.6
C5B-C4B-C3B	120.2 (2)
C5B-C4B-H4B	119.9
C3B-C4B-H4B	119.9
C4B-C5B-C6B	119.4 (2)
C4B-C5B-H5B	120.3
C6B-C5B-H5B	120.3
N1B-C6B-C5B	118.9 (2)
N1B-C6B-H6B	120.5
C5B-C6B-H6B	120.5
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}$	-178.2 (2)
N1B-C2B-C21B-O21B	10.7 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{O} 21 \mathrm{~B}$	-168.3 (2)
N1B-C2B-C21B-C22B	-169.7 (2)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}$	11.3 (4)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	-1.1 (4)
$\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	177.9 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	0.8 (4)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	-0.2 (4)
C2B-N1B-C6B-C5B	-0.3 (4)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-0.1 (4)

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1B—H1B $\cdots \mathrm{Cl1}$	$0.88(3)$	$2.28(4)$	$3.126(2)$	$161(3)$
N1A—H1A $\cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.84(3)$	$2.41(3)$	$3.127(2)$	$145(3)$
N31A—H31A $\cdots \mathrm{Cl2} 2^{\mathrm{ii}}$	$0.90(4)$	$2.51(4)$	$3.323(3)$	$151(3)$
N31A—H31B $\cdots \mathrm{Cl} 3$	$0.96(4)$	$2.33(4)$	$3.267(3)$	$167(3)$
C6B—H6B $\cdots \mathrm{Cl4}$	0.95	2.71	$3.647(3)$	171
Symmetry codes: $(\mathrm{i})-x+1,-y+2,-z ;($ ii $)-x+2,-y+1,-z$.				

Fig. 1

supplementary materials

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2085).

